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Abstract. Charged current charm and D meson production is studied in detail as a means of determining
the unpolarized and polarized strange sea densities at HERA. All analyses are performed in next-to-
leading order QCD, including a calculation of the so far unknown spin-dependent MS coefficient functions
up to O(αs). It is shown that a decent measurement is possible in the unpolarized case, provided a
sufficient luminosity can be reached in the future, while for longitudinally polarized beams it appears to
be extremely challenging due to limitations imposed on the expected statistical accuracy by the charm
detection efficiency.

1 Introduction

At experimentally relevant Q2 values the different unpo-
larized flavor sea quark distributions q̄(x, Q2), q̄ = ū, d̄,
and s̄, are quite distinct, and only for asymptotically large
values of Q2 they eventually evolve to a common x shape
due to the dominance of g → qq̄ transitions. These light
quark sea distributions are usually treated as massless par-
tons in all sets of parton densities, hence requiring some
non-perturbative input for their Q2 evolutions which has
to be determined experimentally. Heavy quarks (mq̄ �
ΛQCD, i.e., q̄ = c̄ and b̄), however, can be dealt with
purely perturbatively, within different methods though,
which completely determines their x and Q2 dependence,
with the heavy quark masses mq̄ being the only physical
parameters.

In recent sets of unpolarized parton distributions it is
either assumed that s̄ (= s) has the same x shape as ū+ d̄
[1,2], or s̄ is solely generated by QCD dynamics from a
vanishing input distribution at some low scale [3], in both
cases leading to an overall suppression of the x integrated
second moment

∫
dx xs̄ in the light sea of about 50% at

Q2 ' 5 − 10 GeV2 [4-7], presumably due to the larger
mass of strange quarks. The entire x dependence of the
flavor decomposed unpolarized light sea is, however, still
rather uncertain. While some information about ū and d̄
is now available from various sources1, and all data in-
dicate that d̄ is greater than ū, s̄ can be inferred only
from CCFR data on deep inelastic neutrino charm pro-
duction [5,6] for the time being, with a NuTeV update to
be expected in the near future [8]. An alternative extrac-

1 Recent compilations can be found, for instance, in [1,3]

tion along 5
6F νN

2 (x, Q2) − 3FµN
2 (x, Q2) ' xs̄(x, Q2) (or

equivalently from corrections to the FµN
2 /F νN

2 ' 5/18
rule) combining CCFR [9] and NMC [10] data cannot be
reliably performed because it suffers from the fact that
s̄ emerges only as a small residual of two large numbers
(xs̄ � FµN

2 , F νN
2 ), which furthermore appear to be incom-

patible at low x [11]. At present, results for 5
6F νN

2 −3FµN
2

seem to be in conflict with the CCFR charm produc-
tion data [11,12], and if this tendency persists with future
NuTeV data, it requires further clarification [12].

The leading order (LO) contribution to charged cur-
rent (CC) charm production in deep inelastic scattering
(DIS) is given by the O(α0

s) parton model process

W+s′ → c , (1)

depicted in Fig. 1a, where s′ denotes the Cabibbo-
Kobayashi-Maskawa (CKM) ‘rotated’ combination

s′ ≡ |Vcs|2 s + |Vcd|2 d (2)

with |Vcs| = 0.9745 and |Vcd| = 0.2205 [13]. Due to the
smallness of |Vcd|2 in (2) the process (1) is expected to
be essentially sensitive to the strange sea content. Only at
large x, where quark sea contributions are less relevant,
the |Vcd|2 suppression is balanced by the valence enhance-
ment of the well-known dv(x).

In next-to-leading order (NLO) QCD, however, this
simple picture is spoiled, and the complete set of Feynman
diagrams in Fig. 1 has to be considered. Apart from the
virtual and real O(αs) corrections to (1), the genuine NLO
gluon induced subprocess

W+g → cs̄′ (3)
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Fig. 1a–d. Feynman diagrams con-
tributing to the CC massive charm
(p2

c = m2
c) production up to O(αs):

Born term a, real gluon emission b, vir-
tual corrections c, and boson gluon fu-
sion d. The Cabibbo suppressed contri-
butions are obtained by substituting all
s by d quarks. The relevant diagrams
for s̄ → c̄ transitions are obtained by
reversing all quark lines in a–d

has to be taken into account as well, which may yield a
significant contribution [14] to the charm production cross
section, hence representing an important ‘background’ for
any extraction of the strange sea. In case of inclusive
charm production these NLO corrections have been calcu-
lated for unpolarized target nucleons in different regular-
ization prescriptions such as the conventional MS scheme
[15,12], which we henceforth adopt, or the ACOT scheme
[16,17], which also takes into account possible effects of
a finite strange quark mass. Recently these fully inclu-
sive calculations were extended to the experimentally rel-
evant case of momentum (z) distributions of the produced
D mesons [18-20]. Such detailed production cross section
considerations seem to prefer a softer, ‘heavy quark-like’,
strange sea [3] over s̄ ∝ ū + d̄ inputs [6,1,2], but further
experimental clarification is certainly highly desirable.

Besides new fixed target neutrino data from NuTeV
[8], one interesting possibility to shed more light on the
strange density and its Q2 evolution would be, of course,
to study CC charm, i.e., dominantly D meson, production

in e±p collisions at HERA, provided a sufficient luminosity
can be reached. We shall perform a closer analysis of this
option and the impact of the gluonic ‘background’ (3) in
this case below. It should be noted in passing that a high
precision measurement of CC charm production in e−p
and e+p collisions could possibly reveal also the relevance
of recent claims [21] that strange and anti-strange densi-
ties may differ, i.e., s 6= s̄, contrary to what is assumed in
all analyses of parton densities so far.

Turning to longitudinally polarized parton densities
∆f , defined by

∆f(x, Q2) ≡ f+(x, Q2) − f−(x, Q2) , (4)

where f+ (f−) denotes the distribution of a parton f with
its spin (anti-)aligned to the parent nucleon’s spin2, much
less is known experimentally about the flavor decomposi-
tion of the light sea or even the gluon density ∆g. Informa-
tion on the ∆f is so far almost exclusively available from

2 By taking the sum instead of the difference in (4) one re-
covers the unpolarized (helicity-averaged) parton densities f
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fully inclusive polarized DIS, i.e., structure function mea-
surements [22], which are only sensitive to specific non-
singlet and singlet combinations of the spin-dependent
quark densities and not to a full flavor separation or ∆g.
Thus all current sets of polarized parton densities, such
as, e.g., the GRSV [23] or GS [24] distributions, have to
fully rely on certain assumptions when providing flavor
decomposed quark densities, which are often biased by
unpolarized measurements and, of course, remain to be
checked.

The knowledge of the flavor decomposed polarized den-
sities, more specifically of their first moments ∆f(Q2) (as
obtained by taking the x integral in (4)), is moreover re-
quired to understand how the nucleon’s spin SN

z = 1/2 is
shared by its ‘constituents’ as a function of the momentum
transfer Q2,

SN
z =

1
2

=
1
2

∑
q=u,d,s

[
∆q(Q2) + ∆q̄(Q2)

]
+∆g(Q2) + Lq

z(Q
2) + Lg

z(Q
2) , (5)

where Lq
z (Lg

z) denotes the orbital angular momentum con-
tribution of the quarks (gluons)3.

The presently available semi-inclusive spin-dependent
DIS measurements [25] are still not conclusive enough to
disentangle different flavors reliably, but some progress has
to be expected soon in particular from the HERMES ex-
periment. Together with upcoming measurements of W
boson production at the polarized BNL-RHIC pp collider
this may yield some information about ∆ū and ∆d̄. How-
ever, a direct measurement of ∆s̄ like in the CCFR neu-
trino DIS experiment turns out to be extremely remote
despite that neutrinos have definite helicity, since tons of
target material would have to be polarized. Thus other
possibilities have to be examined here. Since it is no longer
inconceivable that HERA can be operated at some stage
in the future in a longitudinally polarized collider mode
[26], it was suggested to study CC charm production to
decipher ∆s̄ [27] along similar lines as discussed above
for unpolarized e±p collisions. However, these studies nei-
ther have been performed in NLO, nor do they include
a realistic estimate of the expected statistical or theoret-
ical uncertainties for such a measurement at a polarized
HERA. It is the main purpose of this paper to provide
the complete NLO framework for CC inclusive charm and
momentum (z) differential D meson production in the MS
scheme4 with polarized beams and to study the prospects
of a measurement of ∆s̄ at a polarized HERA.

The remainder of the paper is organized as follows: in
Sect. 2 we outline all relevant technical details of the cal-
culation of unpolarized and polarized CC charm produc-
tion in NLO, mainly focusing on additional complications

3 Of course, in NLO the decomposition on the right-hand
side (r.h.s.) of (5) becomes factorization scheme dependent,
and one always has to specify the scheme one is referring to
when quoting values for the first moments ∆f(Q2) or Lq,g

z
4 We compare our calculation to existing inclusive MS [28]

as well as kmin
T - [29] and mass-regulated [30] results at the end

of Sect. 2

which arise in the momentum (z) differential and in the
spin-dependent case. Section 3 is devoted to a detailed
numerical analysis. First we discuss the prospects of a de-
termination of the unpolarized strange density at HERA,
then we turn to the polarized HERA option and its po-
tential of learning something about ∆s̄. The Appendix
contains the polarized coefficient functions, which are our
main analytical results and are too long to be presented
in the text.

2 Technical framework

To derive the cross sections for inclusive charm and mo-
mentum z differential D meson production in longitudi-
nally polarized CC DIS we follow closely the correspond-
ing unpolarized NLO calculations in [15,12,18]. Since only
very few technical details have been presented in [18] in the
experimentally more relevant case of heavy meson produc-
tion, we shall give a brief overview of the most important,
non-trivial calculational steps as well. We mainly focus,
however, on the complications arising due to the appear-
ance of γ5 and the Levi-Civita tensor εµνρσ in course of
the calculations, which requires special attention in the
polarized case as we will discuss below.

The NLO corrections to the LO parton model CC
production mechanism5 (1) stem from the boson gluon
fusion (BGF) and real gluon emission subprocesses (3)
and W+s → cg, respectively. In the latter case also vir-
tual corrections to (1) have to be included. All contri-
butions are represented by their Feynman diagrams in
Fig. 1. As usual, the NLO (O(αs)) diagrams comprise soft
and collinear divergences, and one has to choose a con-
sistent method of regularizing these singularities so that
they become manifest. For this purpose we work in the
well established framework of dimensional regularization
in n = 4+2ε spacetime dimensions. The divergences then
occur as poles ∼ 1/ε and ∼ 1/ε2 in the physical limit
n → 4. The latter double pole terms only arise in the
quark initiated subprocess when soft and mass/collinear
singularities coincide. While these double and the single
poles from soft gluons in virtual loops and real soft gluon
emission have to cancel by the KLN theorem, there re-
main mass/collinear poles ∼ 1/ε in the gluon and quark
initiated NLO corrections stemming from the region in
phase space where a strange quark propagator goes on-
shell. This can happen either when the initial state gluon
splits into a collinear ss̄ pair or when the initial state
strange quark radiates off a collinear real gluon. These
poles have to be removed from the production dynam-
ics by factorizing them off into the renormalized (scale-
dependent) strange sea density, where we adopt the com-
monly used MS factorization prescription. Charm quark
propagators in collinear g → cc̄, c → cg subdiagrams are
protected from going on-shell by the (heavy) charm quark

5 For simplicity we ignore the CKM s ↔ d mixing (2) in this
technical section. It is, however, properly taken into account
in all phenomenological applications in the next section
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mass, which thereby acts as an effective cut-off of non-
perturbative long distance strong interactions.

In the following we give a unified description of the
calculation of the relevant production processes for unpo-
larized and longitudinally polarized initial states. The pos-
sibility to obtain the unpolarized results ‘simultaneously’
provides a useful check of the correctness of our results,
and we fully agree with the unpolarized results presented
in [15,12,18]. To be specific, we calculate the contributions
of incoming quarks and gluons to the unpolarized and po-
larized structure functions Hq,g

i and ∆Hq,g
i , respectively,

as depicted in Fig. 1 by properly projecting the helicity
dependent squared matrix elements |Mq,g

αβ (±)|2 onto the
structure function i:{

Hq,g
i

∆Hq,g
i

}
≡

{
Pαβ

i

∆Pαβ
i

}[∣∣∣Mq,g
αβ (+)

∣∣∣2 ±
∣∣∣Mq,g

αβ (−)
∣∣∣2]

×dPS2 . (6)

The indices α and β in (6) indicate the polarization indices
of the W± boson, and dPS2 is the two body phase-space
as defined in (11) below. The operators Pαβ

i are given in
(B9)-(B11) of [15] and project for i = 1, 2, and 3 onto the
relevant unpolarized structure functions F1, F2, and F3,
respectively. The structure functions F4 and F5 in [15] do
not contribute to the lepton-nucleon CC cross section if
one assumes a vanishing mass for the lepton as we will do
in the following. Since the polarized structure functions
appear in a similar way in the hadronic tensor as the un-
polarized ones (cf. also (19) and (20) below), the same
projection operators apply in this case if one identifies

∆Pαβ
1 ≡ Pαβ

3 , ∆Pαβ
3 ≡ Pαβ

1 , ∆Pαβ
4 ≡ Pαβ

2 . (7)

The operators ∆Pαβ
i in (7) then project onto the relevant

polarized structure functions g1, g3, and g4, respectively,
and other structure functions like g6 and g7 again do not
contribute for a vanishing lepton mass [29]. The projection
onto the helicity states h = ± of the incoming strange
quark or gluon in the matrix elements M in (6) is achieved
by using the standard relations (see, e.g., [31])

u(ps, h)ū(ps, h) =
1
2

6ps(1 − hγ5) (8)

for incoming strange quarks with momentum ps (analo-
gously for anti-strange quarks) and

εµ(pg, h)ε∗
ν(pg, h) =

1
2

[
−gµν + ihεµνρσ

pρ
gq

σ

pg · q

]
(9)

for incoming gluons with momentum pg (q denotes the
four-momentum of the W± boson).

The presence of γ5 and the totally anti-symmetric ten-
sor εµνρσ in the V-A vertices and Pαβ

3 = ∆Pαβ
1 , respec-

tively, and – in the polarized calculation – also due to
(8) and (9), introduces some extra complications, because
their purely four-dimensional origin allows for no straight-
forward continuation to n 6= 4 dimensions. We choose to
handle these quantities in the HVBM scheme [32], which

was shown to provide an internally consistent continua-
tion of γ5 and εµνρσ to arbitrary dimensions. This pre-
scription is also implemented in the package TRACER [33],
which we use for all trace calculations in n dimensions. In
the HVBM scheme [32] the ε-tensor continues to be a gen-
uinely four-dimensional object, and γ5 is defined as in four
dimensions, implying {γµ, γ5} = 0 for µ = 0, 1, 2, 3 and
[γµ, γ5] = 0 otherwise. This effectively splits the n dimen-
sional space into two subspaces: one containing the four
space-time dimensions and one containing the remaining
(n−4) dimensions, denoted as ‘hat-space’ henceforth. The
price to pay is that in the matrix elements squared in (6)
we then encounter not only conventional n dimensional
scalar products of two momenta, which can be expressed
in terms of the usual partonic Mandelstam variables,

s = (ps,g + q)2 , t = (q − pc)2 , u = (ps,g − pc)2 (10)

in our case, but also similar scalar products in the hat-
space. However, in the parton-boson c.m. system with the
incoming momenta chosen to lie in the ±z direction, all
possible (n − 4) dimensional scalar products of the two
final state momenta can be expressed in terms of a single
hat momenta combination k̂2 = −k̂ · k due to momentum
conservation. The k̂2 terms do not contribute to the un-
polarized calculations6 [15,12,18], but are important for
polarized DIS due to the additional appearance of γ5 and
εµνρσ in (8) and (9) as we will discuss in more detail next.

The partonic two particle phase space dPS2 for one
massive and one massless parton in (6) is given by∫

dPS2 =
1
8π

(4π)−ε s − m2
c

s

1
Γ (ε)

∫ 1

0
dŷ

×
∫ (s−m2

c)2

s ŷ(1−ŷ)

0
dk̂2

(
k̂2

)−(1−ε)
(11)

=
1
8π

s − m2
c

s

1
Γ (1 + ε)

[
(s − m2

c)
2

4πs

]ε

×
∫ 1

0
[ŷ(1 − ŷ)]ε dŷ . (12)

In (12) the integration over dk̂2 has been carried out, and
the standard n dimensional phase space [15] is recovered.
This can only be done if either the matrix element squared
|M|2 in (6) trivially does not depend on k̂2 or if the k̂2 de-
pendent terms in |M|2 are not multiplied by a sufficiently
singular term ∼ (1− ŷ)−2, because the extra subvolume of
the phase space, which is available for k̂2, is intrinsically
of order O(ε) due to the 1/Γ (ε) in (11). These conditions
are always met in the unpolarized case.

Equation (11) leaves the two options to either fully in-
tegrate the (∆)Hq,g

i in (6) over the entire phase space or
to consider more differential observables which can be ob-
tained from some Jacobian according to d/dΞ = d/dŷ dŷ/
dΞ, where Ξ stands for any kinematical observable that

6 In principle these calculations can be performed also by us-
ing the theoretically inconsistent anti-commuting γ5 prescrip-
tion of [34] in n dimension as was done in [15]
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can be expressed by ŷ ≡ (1 + cos θ∗)/2, with θ∗ being the
W±-parton c.m.s. scattering angle. A more detailed dis-
cussion including subtleties arising from endpoint (soft)
singularities will be given below when we consider the
fragmentation spectrum of charm quarks in CC DIS.

The helicity-dependent matrix elements
∣∣∣Mq,g

αβ (±)
∣∣∣2 in

(6) can be easily derived from standard Feynman rules
and will not be given here7. They can be conveniently
expressed in terms of the partonic Mandelstam variables
(10), which in turn can be written as

s =
Q2

ξ′

(
1 − ξ′ +

m2
c

Q2

)
t =

−1
s

(s + Q2)(s − m2
c)(1 − ŷ) (13)

u = −s + Q2

s

[
m2

c + ŷ(s − m2
c)

]
+ m2

c ,

where Q2 = −q2 and

ξ′ =
Q2

2ps,g · q

(
1 +

m2
c

Q2

)
=

Q2 + m2
c

s + Q2 (14)

is the partonic analogue of the slow rescaling parameter
ξ = x(1 + m2

c/Q2) [35]. Its introduction is required in
NLO for a consistent factorization of initial state collinear
singularities [15].

Within dimensional regularization the soft and collinear
singularities in (∆)Hq,g

i can be isolated using standard
distribution-valued expansions [36] of the type

ŷε(1 − ŷ)−1+ε =
1
ε
δ(1 − ŷ) +

1
(1 − ŷ)+

+ε

{[
ln(1 − ŷ)

1 − ŷ

]
+

+
ln ŷ

1 − ŷ

}
, (15)

where the ‘+’-distributions are defined in (A4) in the Ap-
pendix. The relevant expansions for the initial state vari-
able ξ′ can be found in (30)–(32) of [15]. After isolating
soft and collinear poles and canceling the soft poles we can
– according to our discussion below (11) – transform the
results to the final state charm quark momentum scaling
variable ζ ≡ pc · ps,g/q · ps,g using

dŷ

dζ
=

s

s − m2
c

. (16)

Care has to be taken when applying the Jacobian in (16)
to distribution-valued expressions in the variable ŷ as in
(15). There the transformation does not merely amount
to a multiplication with dŷ/dζ but rather has to be found
by changing the integration variable when folding the dis-
tribution with some test function such that:

δ(1 − ŷ) → δ(1 − ζ) ;
1

(1 − ŷ)+
→ 1

(1 − ζ)⊕
;

7 The non-trivial virtual corrections are explicitly calculated
in [15] which we confirm after eliminating a misprint in the
coefficient A2 in Tab. 1 of [15], which should read [28] KA

instead of KA/2

[
ln(1 − ŷ)

1 − ŷ

]
+

→
[ ln(1−ζ)

1−ζmin

1 − ζ

]
⊕

, (17)

where the ‘⊕’-distributions are defined again in (A4), λ ≡
Q2/(Q2+m2

c), and ζmin = (1−λ)ξ′/(1−λξ′). Furthermore,
because ζmin → 1 as ξ′ → 1

δ(1−ξ′)f(ξ′, ζ) = δ(1−ξ′)δ(1−ζ)
[∫ 1

ζmin

dαf(ξ′, α)
]

ξ′=1

,

(18)
where f may be either a function or distribution. We note
here that by an analogous Jacobian transformation as in
(15)-(18) we could in principle obtain differential distri-
butions in the transverse momentum pT

c (=
√

s/4 − m2
c

sin θ∗) of the produced charm quark as well.
Using the standard tensor decomposition of the

hadronic tensor, the structure functions FW ±
i=1,2,3 (unpolar-

ized) and gW ±
i=3,4,1 (polarized) refer to the following double

[triple] differential CC e∓p cross sections

d2,[3]σe∓p

dx dy [dz]
=

G2
F Sep

2π(1 + Q2/M2
W )2

[
(1 − y)FW ∓

2

+y2xFW ∓
1 ± y(1 − y

2
)xFW ∓

3

]
(19)

d2,[3]∆σe∓p

dx dy [dz]
=

G2
F Sep

2π(1 + Q2/M2
W )2

[
(1 − y)gW ∓

4

+y2xgW ∓
3 ± y(1 − y

2
)xgW ∓

1

]
(20)

for a fully polarized lepton beam (left-handed e− or right-
handed e+) scattering off an unpolarized (19) or a po-
larized (20) target and where GF , Sep and MW denote
the Fermi coupling, available c.m.s. energy squared, and
W -boson mass, respectively. The longitudinally polarized
cross section d∆σ in (20) is defined as the difference (dσ→

⇐
−dσ→

⇒), where ⇒ (→) denotes the direction of the proton
(lepton) spin. In case the incident lepton is not fully po-
larized, i.e., Pe 6= 1, the r.h.s. of (19) and (20) have to be
multiplied by an overall factor (1 +Pe)/2, which amounts
to a factor 1/2 for an unpolarized lepton beam (Pe = 0).
One should note the change of sign of the F3 and g1 terms
in (19) and (20), respectively, when the electron e− is re-
placed by a positron e+. In (19) and (20) x and y are
the standard kinematical deep inelastic variables (Bjorken
scaling variable and inelasticity, respectively) and, more-
over, z ≡ pD · P/q · P (pD being the charmed hadron’s
momentum) is a final state scaling variable.

The CC structure functions entering d(∆)σe−p in (19)
and (20) are obtained by the following convolutions8:{Fc

i

Gc
i

(x, Q2)
}

=
{ s̄

∆s̄
(ξ, µ2

F )
}

+
αs(µ2

R)
2π

8 With obvious adjustments for dσe+p in (21) and (22) below:
(∆)s̄ → (∆)s and {F3, G3,4} → −{F3, G3,4}
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×
(∫ 1

ξ

dξ′

ξ′

[{
Hq

i

∆Hq
i

(ξ′, µ2
F , λ)

} {
s̄

∆s̄
(
ξ

ξ′ , µ
2
F )

}
+

{
Hg

i

∆Hg
i

(ξ′, µ2
F , λ)

} {
g

∆g
(
ξ

ξ′ , µ
2
F )

}])
(21)

{Fc
i

Gc
i

(x, z, Q2)
}

=
{ s̄

∆s̄
(ξ, µ2

F )
}

Dc(z) +
αs(µ2

R)
2π

∫ 1

ξ

dξ′

ξ′

∫ 1

max(z,ζmin)

dζ

ζ

×
[{

Hq
i

∆Hq
i

(ξ′, ζ, µ2
F , λ)

} {
s̄

∆s̄
(
ξ

ξ′ , µ
2
F )

}
+

{
Hg

i

∆Hg
i

(ξ′, ζ, µ2
F , λ)

} {
g

∆g
(
ξ

ξ′ , µ
2
F )

}]
Dc(

z

ζ
) . (22)

where{Fc
1

Gc
3

}
≡

{
F c

1

−gc
3

}
;

{Fc
3

Gc
1

}
≡ 1

2

{−F c
3

gc
1

}
;{Fc

2

Gc
4

}
≡ 1

2ξ

{
F c

2

−gc
4

}
. (23)

The superscript ‘c’ in (21)-(23) indicates that we restrict
ourselves only to the charm production contribution to
deep inelastic CC structure functions and the cross sec-
tions in (19) and (20). For simplicity we set the factor-
ization scale µF equal to the renormalization scale µR in
(21) and (22) and fix both at µ2

F = µ2
R ≡ Q2 + m2

c . The
coefficients Hq,g

i can be found in [12,18] while the polar-
ized ∆Hq,g

i are new and listed in the Appendix. Please
note that the ∆Hq

i (ξ, ζ, µ2
F , λ) in the Appendix (exactly

as the Hq
i (ξ, ζ, µ2

F , λ) in [18]) comprise terms of the type
[f(ξ)]+g(ξ) where g is a singular function at ξ = 1. These
terms seem to be ill-defined at first sight. They are, how-
ever, completely well-behaved on the phase space of the
double convolutions in (22) because the integration vol-
ume ∆ζ = 1 − ζmin vanishes at ξ = 1 such that [g(ξ)(1 −
ζmin)]ξ=1 is always finite.

In (22) the (factorization scale independent) charm
fragmentation function is taken as [37]

Dc(z) = N
{

z
[
1 − z−1 − εc/(1 − z)

]2}−1
(24)

with the normalization constant N being related to εc via∫ 1
0 dzDc(z) = 1. The ‘hardness’ parameter will be fixed

to be εc = 0.06 for our numerical applications in the next
section in agreement [18,20] with fixed target neutrino
data [4-6]. For our phenomenological considerations in the
following section the precise value of εc is, however, of
minor importance.

An important comment about our final expressions for
the ∆Hq

i given in (A1)-(A3) should be made. A naive
calculation, as outlined above, gives:

∆H̃q
i=3,4,1(ξ, ζ, µ2

F , λ)

= Hq
i=1,2,3(ξ, ζ, µ2

F , λ) − 4CF (1 − ξ)δ(1 − ζ) . (25)

The difference 4CF (1 − ξ)δ(1 − ζ) stems, however, from a
too naive factorization of the initial state collinear s → sg
singularity in the polarized case in n 6= 4 dimensions. In
order to restore helicity conservation at the strange quark-
gluon vertex [38] the finite renormalization

∆H̃q
i=3,4,1(ξ, ζ, µ2

F , λ)

→ ∆H̃q
i=3,4,1(ξ, ζ, µ2

F , λ) + 4CF (1 − ξ)δ(1 − ζ)

= Hq
i=1,2,3(ξ, ζ, µ2

F , λ) (26)

has to be considered, leading to our final results in the
Appendix. These NLO (MS) coefficient functions ∆Hq

3,4,1
(ξ, ζ, µ2

F , λ) hence coincide with the corresponding un-
polarized expressions Hq

1,2,3(ξ, ζ, µ2
F , λ) [18], as must be

due to the same tensorial structure at the partonic level,
the nature of the V-A interactions, and helicity conser-
vation at the (massless) strange quark-gluon vertex. It
should be remarked that the fully inclusive quark coef-
ficients ∆Hq

i (ξ, µ2, λ) have been already obtained in [28],
and we fully agree with these results.

For the Hg
i the relation between the small strange

quark mass limit of the fully massive (ms,c 6= 0) BGF pro-
cess and the MS results of [18] has been established in (5)
of [19]. We note here that analogously the ∆Hg

i (ξ, ζ, µ2
F , λ)

in (A9) can also be obtained from the ms → 0 limit of
the general, fully massive spin-dependent BGF expres-
sions in (10) of [30]. This is a non-trivial cross check of our
MS results. Similarly our expressions for ∆Hg

i (ξ, µ2
F , λ)

in (A11) agree with the kmin
T (transverse momentum cut-

off) regulated results in (13) of [29] for kmin
T = 0 in the

limit ms → 0. Finally, taking the limit mc → 0 of our
∆Hq,g

i (ξ, µ2
F , λ) we recover – apart from obvious collinear

logs – the massless results in [39] after transforming them

to the conventional MS scheme by setting the ∆̃fq,g
i = 0

in [39]. The results in [39] originally refer to a scheme with
a non-vanishing gluonic contribution to the first moment
of g1, g3 and g4 as do the kmin

T regulated results in (15) in
[29] when taking the massless limit.

3 Determining s̄ and ∆s̄ at HERA

Equipped with the required technical framework, we now
turn to a detailed discussion and numerical analysis of the
prospects of determining s̄ and ∆s̄ at HERA in the future.

To begin with, Fig. 2 shows the unpolarized z differ-
ential D̄ meson production cross section e−p → D̄X ac-
cording to (19) for a fixed value of x = 0.05 and where
we have integrated over Q2 = Sepxy > 500 GeV2 em-
ploying the cut 0.01 ≤ y ≤ 0.9, with

√
Sep = 300 GeV

for HERA. Unless otherwise stated we use the GRV-94
[40] distributions in all our unpolarized calculations9. The

9 This is mainly to avoid any inconsistencies due to different
ΛQCD values, spurious violations of the positivity requirement
|∆f | ≤ f , etc., in the calculation of the polarization asym-
metries (27) below, since the spin-dependent GRSV parton
distributions [23], which we adopt, were being set-up with the
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Fig. 2. z differential CC D̄ meson production cross section
e−p → D̄X in NLO obtained by integrating (19) over the
range Q2 = Sepxy > 500GeV2 with 0.01 ≤ y ≤ 0.9 and√

Sep = 300GeV for HERA. The GRV-94 NLO parton densi-
ties [40], mc = 1.5GeV, µ2

F = Q2 + m2
c , and εc = 0.06 in the

charm fragmentation function (24) are used. Also shown are
the individual NLO gluon- and quark-initiated contributions,
the latter including the virtual corrections, and the Born term
obtained with NLO parton distributions

different contributions to the NLO cross section dσ/dxdz
are shown separately in Fig. 2 to demonstrate the impact
of the genuine NLO gluon induced subprocess. Needless
to say, only the total NLO cross section is a physically
meaningful observable. As can be seen, the gluonic con-
tribution becomes increasingly important and eventually
dominates at small values of z, where the Born approx-
imation becomes completely meaningless. The sharp rise
for z → 0 can be traced back to the 1/ζ behaviour in the
g → cc̄ splitting in the u-channel subprocess depicted on
the r.h.s. of Fig. 1d. This behaviour should not be con-
sidered as a destabilization of the perturbative expansion
by NLO corrections because it is entirely due to the first
contribution from charm quarks produced by strong in-
teraction dynamics which one even should expect to be
important at high Q2. Note that in the region of BGF
dominance around z . 0.1 the production dynamics and
the resulting steep shape is very similar to the neutral cur-
rent case [20], where the gluon fusion production channel
is – within fixed order perturbation theory – classified as
leading order. To avoid any confusion we will, nevertheless,
in the following continue to count all O(αs) contributions
as ‘NLO’ in the CC case under consideration here. Let us
note that, on top of an s̄(x) measurement, the mere obser-
vation of a rising cross section towards small z at HERA
would be an interesting experimental confirmation of the
underlying QCD dynamics and evolution effects because
such a behaviour is completely absent at fixed target scales
[18,4-7], where the contribution from the charm quark in

unpolarized GRV-94 distributions [40] as reference. Anyway,
the results obtained using the recent GRV update [3] are al-
most indistinguishable

full NLO

Born term
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dσ/dx [pb]
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Fig. 3. The CC D̄ meson production cross section e−p → D̄X
in NLO obtained from (19) as in Fig. 2 but now as a function of
x and integrated over two ranges of z: 0 < z < 1 and 0.2 < z <
1. Also shown is the Born contribution in each case, obtained
with NLO parton distributions

the u-channel of the BGF is small. Integrated over z, the
steep small z rise results in a quasi-collinear logarithm
∼ lnQ2/m2

c , which may lead to substantial gluonic cor-
rections in the inclusive cross section dσ/dx unless they
are removed by acceptance losses or suitable cuts, as will
be discussed in more detail below.

Both (gluon- and quark-initiated) NLO corrections are
sizeable in the entire z range as can be inferred from com-
paring the Born result with the individual NLO contri-
butions in Fig. 2. The NLO corrections tend to soften
the D̄ meson z spectrum and shift the peak due to the
Peterson fragmentation spectrum (24), located at around
z ' 0.75−0.8 in the Born term, towards smaller values of
z. However, we have used NLO distributions and a NLO
value for εc in (24) for the calculation of the Born term,
and hence a LO and NLO comparison does not reflect a
real K factor, i.e., the ratio dσNLO/dσLO, which has to
be obtained in a consistent LO and NLO calculation using
LO and NLO densities and parameters, respectively. We
refrained from doing so here, since on the one hand possi-
ble differences between the LO and NLO strange densities
are hardly known yet, and on the other hand our main
purpose is to illustrate the impact of the NLO corrections
undiluted by different choices of the parton densities and
other parameters. Furthermore, K factor considerations
are somewhat misleading for the differential observable
considered here because the ‘LO’ Born term is at the par-
tonic level by construction10 sharply peaked in the forward
(proton) direction ∼ δ(1 − ζ) ∝ δ(1 + cos θ∗), and a con-
tinuous spectrum in z is only achieved by smearing the
delta peak with the Peterson function in (24), i.e., purely
by non-perturbative hadronization effects. Only in NLO a
differential distribution which covers the full phase space is
obtained already at the (perturbative) partonic level and
then translates into a realistic hadronic D̄ meson momen-

10 It sums up the leading collinear logs
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tum spectrum. It should be mentioned as well that in the
very large z region, z & 0.85, perturbatively large ln(1−z)
terms in the NLO subprocesses have to be resummed [41],
and non-perturbative higher twist contributions will per-
haps become relevant [42] such that our results in this
region cannot be trusted (as is obvious, of course, from
the negative cross section obtained here).

In Fig. 3 we compare the results for the z integrated D̄
meson production cross section dσ/dx for two cases: either
integrated over the entire z range (inclusive cross section)
or restricted to the region 0.2 < z < 1, which turns out
to be a suitable theoretical cut to strongly reduce the glu-
onic ‘background’ and perhaps also mimics a poorer ex-
perimental resolution a low z [43]. As expected from our
results in Fig. 2 we obtain again large NLO corrections in
the first case, mainly due to the sharp rise for z → 0 in
NLO, whereas in the second case the corrections cancel to
a large extent. This cancellation can be readily understood
from the results shown in Fig. 2: both NLO contributions
change sign at around z ' 0.5− 0.7 and roughly integrate
to zero in the chosen z range11 0.2 < z < 1. The small-
z region where the gluonic correction becomes dominant
is simply left out, thereby minimizing the residual NLO
effects. It should be mentioned here that in the charge con-
jugated case e+p → DX the dv → c valence enhancement
at large x, which we have briefly discussed in the Intro-
duction, becomes significant at the ∼ 10% level around
x ∼ 0.1, but dominant only for very large x & 0.5.

A comment should be made, however, about the NLO
corrections which seem to be anomalously large at small
values of x in the fully inclusive case (0 < z < 1), where
they are dominated by a large quasi-collinear logarithm
lnQ2/m2

c . One may attribute, for the moment, this loga-
rithm to a corresponding W−c → s contribution12 by in-
troducing a resummed, massless charm density c(x). The
large NLO corrections seem then in turn to imply a larger
contribution from charm than strange quarks, i.e., c(x) >
s(x) in such a language, see also Fig. 2 (r.h.s.) in [44],
which would be theoretically not very appealing and would
therefore seriously question the perturbative reliability of
the fixed order logarithm lnQ2/m2

c . One has to be careful
with such interpretations though, since for small values
of x and hence large values of y of about 0.7 at HERA,
the structure function F3 becomes important in (19). In
F ep

3 s and c enter with negative and positive signs, respec-
tively. Taking into account the x and y dependent weights
in front of F1, F2, and F3 in (19) it turns out that the
negative s contribution in F3 cancels to a considerable
amount the positive contributions in F1 and F2, whereas
all charm contributions add up. Therefore the surprising
result that charm quarks contribute a larger portion to
dσ than strange quarks (mimicing ‘c(x) > s(x)’) is simply

11 One can restrict the integrations also to the range 0.2 <
z . 0.85 to avoid the region in the cross section where ln(1−z)
logarithms become dominant. This would lead only to a slightly
larger NLO result
12 Obviously such a process would not be considered as CC
charm production since there is no charm activity in the final
state (see also the discussion below)

an effect of the electroweak couplings in that particular
kinematic region.

Another indication that the large gluonic correction
∼ lnQ2/m2

c in Fig. 3 does not necessarily call for collinear
resummations comes from an O(α2

s) calculation of CC
heavy quark production in the asymptotic limit Q2 � m2

c

[45]. Here it was found that although the O(αs) gluonic
contribution is large, the O(α2

s) terms hint at a completely
stable and well-behaved fixed order perturbation series. As
an indication of the perturbative reliability of our results
it should be furthermore noted that the dependence of our
results in Figs. 2 and 3 on the precise value of the factoriza-
tion scale µF is rather weak. Variations of µ2

F in the range
0.1(Q2 + m2

c) ≤ µ2
F ≤ 10(Q2 + m2

c), i.e., by two orders of
magnitude around our default value µ2

F = Q2+m2
c , change

the results for dσ/dxdz and dσ/dx shown in Figs. 2 and 3
by at most ∼ ±10%. On top of this comes a more practical
reason for our preference for fixed order perturbation the-
ory in the CC case. As mentioned above the resummation
of quasi-collinear logs ∼ lnQ2/m2

c requires simultaneously
the introduction of a masslessly evolved charm density
c(x) entering a W−c → s production channel, where the
corresponding c̄ from the gluon splitting must be thought
of as hiding in the hadronic debris. This means that we
loose any information whether the event will be tagged as
a charm event experimentally. Even if we assume that the
c̄ escapes always undetected, we have no possibility for a
gauge and renormalization group invariant separation of
this production channel from the (tagged) rest of the cross
section. On the other hand, in a differential fixed order
calculation we can, as demonstrated above, apply suitable
z → 0 (or pT

c → 0) cuts to exclude the quasi-collinear
region.

It should be mentioned that the x value in Fig. 2 has
been chosen to guarantee a sizeable cross section, i.e., a re-
alistic chance to actually measure s̄. For larger values of x,
dσ/dxdz shows qualitatively similar features as the ones
illustrated in Fig. 2 but at a much reduced cross section
as can be inferred from Fig. 3. Of course, the gluon con-
tribution becomes less important with increasing x, and
the rise for z → 0 becomes much less pronounced. With
the upcoming luminosity upgrade at HERA it should be
feasible to study these CC reactions with sufficient statis-
tics. The obtained cross sections in Figs. 2 and 3 are all
in the ball-park of about 30 − 50 pb for x ' 0.05 and
thus seem to be measurable, assuming an integrated lu-
minosity of L = 200 − 500 pb−1 in the future, even if one
takes a rather small charm detection efficiency of about
1 − 2% into account. The charm detection is actually the
limiting factor for such measurements, in particular in the
polarized case as will be shown below. The z-integrated
cross section including a cut z & 0.2 in Fig. 3 is particu-
larly suited for a measurement of the strange density at
HERA since the ‘background’ from BGF drops out al-
most completely, and the full NLO cross section can be
approximated by its Born term, which is directly sensitive
to s̄. However, within the achievable accuracy it seems
to be virtually impossible to distinguish between differ-
ent currently available strange densities as is illustrated
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Fig. 4a,b. Comparison of the NLO z integrated D̄ meson
production cross section e−p → D̄X as in Fig. 3 using the
GRV-94 [40] and MRST [1] distributions for two ranges of z:
a 0 < z < 1 and b 0.2 < z < 1

in Fig. 4. The differences between the results obtained us-
ing the GRV-94 densities [40] (or the recent update [3])
or the MRST distributions [1] are not very pronounced
at Q2 ≥ 500 GeV2 since they are washed out by the Q2

evolution. A possible improvement would be to add the
results for D and D̄ meson production, i.e., the results
obtained for e−p and e+p CC reactions, which would ob-
viously double the statistics. The price to pay is of course
that one would loose any sensitivity to possible differences
between s and s̄ [21]. However, it seems to be difficult
anyway to test the latter at HERA unless s and s̄ would
drastically differ which seems to be not very realistic. To
finish this discussion it should be stressed that the differ-
ences between the GRV and MRST results in Fig. 4 are
indeed mainly due to the different assumptions about the
strange density. Any differences in the gluon distribution
are not important in that particular kinematic region (in
Fig. 4b the gluon contribution almost cancels anyway),
for instance, using the ‘large’ gluon or ‘small’ gluon set
of MRST, MRST(g↑) and MRST(g↓) [1], respectively, in-
stead, hardly leads to any changes.

Let us now turn to the polarized case. As already men-
tioned in the Introduction, such measurements could be
performed at HERA as well provided that the option to
longitudinally polarize both beams [26] will be realized in
the future. Since large polarized targets as required for
neutrino DIS are not likely to be ever build, it should be
stressed that HERA would be a unique place to study CC
DIS (among other reactions which can be only analyzed
at a polarized ep collider, see [26]).

Figures 5 and 6 show the polarized z differential and
integrated D̄ meson production cross sections according

NLO: total
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_
 s)

(W− s
_
 → c

_
 g)

z

x = 0.05d∆σ/dx dz [pb]

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. As in Fig. 2 but now for longitudinally polarized e−p
collisions according to (20) and using the GRSV ‘standard’ set
of polarized parton distributions [23]
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Fig. 6. As in Fig. 3 but now for longitudinally polarized e−p
collisions according to (20) and using the GRSV ‘standard’ set
of polarized parton distributions [23]

to (20) in a similar way as above in the unpolarized case
in Figs. 2 and 3, respectively. Unless otherwise stated we
use the GRSV ‘standard’ set of spin-dependent parton
densities [23] in our calculations, which provides a rather
large, negatively polarized strange density, i.e., ∆s(x, Q2)
= ∆s̄(x, Q2) < 0 for all values of x and Q2. For the differ-
ential cross section d∆σ/dxdz in Fig. 5 one observes the
same qualitative feature as in the unpolarized case: the
NLO corrections become increasingly important for small
values of z due to the sharp rise of the gluonic contri-
bution. However, the polarized gluon density ∆g is only
very weakly constrained by presently available data, and
hence the actual size of the gluonic correction is extremely
uncertain and strongly dependent on the chosen set of par-
ton densities. A meaningful measurement of ∆s̄ is there-
fore only possible if ∆g becomes better constrained in the
future, which is not unlikely in view of the forthcoming
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experiments at BNL-RHIC and CERN (COMPASS), or
– even better – if the gluonic ‘background’ can be elimi-
nated or largely reduced by some suitable cuts. The latter
can be partly achieved for the z integrated D̄-meson cross
section d∆σ/dx by introducing – as in Fig. 3 above – a
lower cut-off z & 0.2 for the integration as can be inferred
from Fig. 6. Contrary to the unpolarized case, the gluonic
correction does not fully drop out here, since it is not os-
cillating in the region 0.2 < z < 1 (at least not for the
chosen ∆g). However, this observable nevertheless seems
to be best suited for a determination of the strange sea,
but some knowledge of ∆g would be certainly desirable
to disentangle its ‘background’ more precisely. It should
be mentioned that the dependence on the factorization
scale is rather weak, similar to our observations for the
unpolarized case.

Finally, let us study the sensitivity of CC charm pro-
duction to the unknown spin-dependent strange density
by comparing the results obtained for different, extreme
choices of ∆s̄. First of all it should be noted that the actual
observable is the spin asymmetry for D meson production

AD ≡
∫ 1

zmin
dz d∆σ/dx/dz∫ 1

zmin
dz dσ/dx/dz

(27)

rather than the polarized cross sections for zmin = 0 and
0.2 shown in Fig. 6. AD in (27) is simply related to a mea-
surement of the counting rate asymmetry for parallel and
anti-parallel alignment of the proton and lepton spins and
does not require the determination of the absolute nor-
malization. Furthermore, other experimental uncertainties
conveniently drop out in the ratio (27).

Figure 7 shows our results for d∆σ/dx and AD in lon-
gitudinally polarized e−p and e+p collisions for zmin = 0
and 0.2. Apart from the GRSV ‘standard’ set, we now
adopt also the GRSV ‘valence’ set [23], which, on the con-
trary, has a small positive strange density in the relevant
x region whereas the gluon distribution is practically un-
changed. While the cut z > 0.2 merely changes the size of
the cross section and hardly effects the asymmetry AD for
the ‘standard’ set, the influence of the cut on AD is more
pronounced for the ‘valence’ set as can be inferred from
comparing Figs. 7b and d. The oscillating behaviour in the
‘valence’ case stems from the interplay of Born and NLO
contributions with different signs. Also shown in Fig. 7 is
the expected statistical accuracy δAD for such a measure-
ment at a polarized HERA

δAD =
1
Pp

√
1 − P 2

p AD2√
L ∫

dx dσ/dx εc
eff (1 + Pe)/2

(28)

assuming an integrated luminosity of L = 500 pb−1, 70%
beam polarizations Pp and Pe, and where we have inte-
grated over three bins in x. As can be seen the results
for either e−p or e+p collisions for the two different sets
of parton densities can be distinguished within the error
bars and hence some information on ∆s can be extracted.
However, there is a severe catch: In Fig. 7 a charm de-
tection efficiency of 100% was assumed, i.e., εc

eff = 1, as

was also used in previous LO calculations [27], but which
is completely unrealistic. With present-day values for εc

eff

at HERA of much less than 5% a measurement of ∆s via
CC D meson production is certainly impossible. However,
until a polarized HERA could be realized in the future,
some progress on charm detection might be possible. Fur-
thermore, given the possibility that runs will be made with
e− and e+ beams these results could be added to double
the statistics. Of course, possible changes of sign in d∆σ
have to taken into account by taking the absolute value,
and it would be somewhat less clear how to extract ∆s̄ in
such a case.

4 Summary

We have presented the complete NLO QCD framework
for CC mediated inclusive charm and momentum z dif-
ferential D meson production in DIS with unpolarized
and longitudinally polarized beams. The calculated O(αs)
coefficient functions refer to the MS fixed flavor scheme
which fully takes into account the mass of the produced
heavy (charm) quark. Our unpolarized results fully agree
with previous calculations while the spin-dependent ex-
pressions are entirely new. Special emphasis was put on
technical subtleties in the z differential case and due to
the appearance of γ5 in n dimensional regularization.

Exploiting our analytical results we have performed
a detailed phenomenological analysis of the prospects of
determining the unpolarized and polarized strange density
from CC D meson events at HERA. It was shown how
to reduce the ‘unwanted’ contribution from the genuinely
NLO gluon initiated subprocess considerably by imposing
a lower cut-off on the D meson momentum fraction z for
z integrated rates. Furthermore, it was argued that the
sizeable NLO corrections observed for inclusive charm and
momentum z differential D meson production can be both
understood and even expected in the kinematical domain
of HERA due to the peculiarities arising from the mixture
of weak and strong interactions in the case of CC charm
production.

It turned out that the rather small charm detection
efficiency is the main limiting factor in pinning down the
strange sea at HERA. Nevertheless, the unpolarized
strange density was shown to be measurable with sufficient
accuracy (a decent luminosity permitting), and HERA can
hopefully contribute to a better understanding of the so
far only weakly constrained strange distribution in the
future. Unfortunately, in the polarized case, where much
less is known about the flavor decomposition of the sea,
a useful measurement of ∆s̄ from the CC D meson spin
asymmetry cannot be performed without a significantly
improved charm detection efficiency.
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Fig. 7a–d. The z integrated polarized
cross section [a: 0 < z < 1, c: 0.2 <
z < 1] as in Fig. 6 and the corre-
sponding measurable spin asymmetry
AD [b: 0 < z < 1, d: 0.2 < z < 1]
according to (27). Also shown for com-
parison are the results for e+p → DX
and the ones obtained using the GRSV
‘valence’ set of spin-dependent parton
densities [23]. The error bars denote the
expected statistical accuracy δAD ac-
cording to (28) for three different x bins
assuming L = 500 pb−1, Pe = Pp =
0.7, and εc

eff = 1. Two x bins are cho-
sen at equal logarithmic distance in the
range [xmin ' 0.006, 0.1] and one for
x > 0.1

Appendix

Here we list the expressions for the NLO (MS) CC coeffi-
cient functions ∆Hq,g

i=3,4,1 for heavy quark (charm) pro-
duction appearing in (21) and (22). The ζ differential
fermionic NLO (MS) coefficients ∆Hq

i=3,4,1(ξ, ζ, µ2
F , λ) in

(22), as obtained from calculating the subprocess W+s
→ gc and the virtual corrections to W+s → c, coincide
with the unpolarized functions Hq

i=1,2,3(ξ, ζ, µ2
F , λ) in [18].

They will be nevertheless also given here for completeness:

∆Hq
3 (ξ, ζ, µ2

F , λ)

= δ(1 − ζ)
{

∆P (0)
qq (ξ) ln

Q2 + m2
c

µ2
F

+
4
3

[
1 − ξ + (1 − ξ) ln

(1 − ξ)2

ξ(1 − λξ)
− 2ξ

ln ξ

1 − ξ

+2ξ

(
1

1 − ξ
ln

(1 − ξ)2

1 − λξ

)
+

]}
+

4
3

×
{

−δ(1 − ξ)δ(1 − ζ)
[
1
2

(
1 + 3λ

λ
KA +

1
λ

)
+ 4

+
π2

3

]
+

1 − ξ

(1 − ζ)⊕
+ (1 − ζ)

(
1 − λξ

1 − ξ

)2 [
1 − ξ

(1 − λξ)2

]
+

+2
ξ

(1 − ξ)+
1

(1 − ζ)⊕

[
1 − (1 − ζ)

1 − λξ

1 − ξ

]
+ 2 ξ

[
1 − (1 − ζ)

1 − λξ

1 − ξ

]}
(A1)

∆Hq
4 (ξ, ζ, µ2

F , λ)

= ∆Hq
3 (ξ, ζ, µ2

F , λ) +
4
3

{
δ(1 − ξ)δ(1 − ζ)KA

− 2
(

ξ(1 − 3λ)[1 − (1 − ζ)
1 − λξ

1 − ξ
] + (1 − λ)

)}
(A2)

∆Hq
1 (ξ, ζ, µ2

F , λ)

= ∆Hq
3 (ξ, ζ, µ2

F , λ)

+2
4
3

{
(1 − ξ)[1 − (1 − ζ)

1 − λξ

1 − ξ
] − (1 − λξ)

}
(A3)

where we have defined λ ≡ Q2/(Q2 + m2
c) and KA ≡

1
λ (1−λ) ln(1−λ) and ∆P

(0)
qq (ξ) = 4

3

(
1+ξ2

1−ξ

)
+

denotes the

LO q → q splitting function. The ‘+’ and ‘⊕’ distributions
in (A1)-(A3) are defined by∫ 1

0
dξ

f(ξ)
(1 − ξ)+

=
∫ 1

0
dξ

f(ξ) − f(1)
1 − ξ

,∫ 1

ζmin

dζ
f(ζ)

(1 − ζ)⊕
=

∫ 1

ζmin

dζ
f(ζ) − f(1)

1 − ζ
(A4)

with ζmin = (1 − λ)ξ/(1 − λξ).
When integrated over ζ, the results given in (A1)-(A3)

reduce to the inclusive coefficients

∆Hq
i (ξ, µ2

F , λ) ≡
∫ 1

ζmin

dζ ∆Hq
i (ξ, ζ, µ2

F , λ) (A5)

appearing in (21), where

∆Hq
i (ξ, µ2

F , λ) =
[
∆P (0)

qq (ξ) ln
Q2 + m2

c

µ2
F

+ ∆hq
i (ξ, λ)

]
(A6)

with

∆hq
i (ξ, λ)

=
4
3

{
hq + Ai δ(1 − ξ) + B1,i

1
(1 − ξ)+

+ B2,i
1

(1 − λξ)+
+ B3,i

[
1 − ξ

(1 − λξ)2

]
+

}
(A7)



118 S. Kretzer, M. Stratmann: QCD corrections to charged current charm production

Table 1. Coefficients for the expansion of ∆hq
i in (A7)

i Ai B1,i B2,i B3,i

3 0 1 − 4ξ + ξ2 ξ − ξ2 1
2

4 KA 2 − 2ξ2 − 2
ξ

2
ξ

− 1 − ξ 1
2

1 0 −1 − ξ2 1 − ξ 1
2

and

hq = −
(

4 +
1
2λ

+
π2

3
+

1 + 3λ

2λ
KA

)
δ(1 − ξ)

− (1 + ξ2) ln ξ

1 − ξ
+ (1 + ξ2)

×
[
2 ln(1 − ξ) − ln(1 − λξ)

1 − ξ

]
+

. (A8)

The coefficients in (A7) for i = 3, 4, 1 are given in Table 1
and agree with the results presented in [28,12].

The ζ differential NLO (MS) gluonic coefficient func-
tions ∆Hg

i (ξ, ζ, µ2
F , λ) for heavy quark (charm) produc-

tion in (22), as calculated from the BGF subprocess W+g
→ cs̄, are given by

∆Hg

i= 3,4
1

(ξ, ζ, µ2
F , λ)

= δ(1 − ζ)
{

∆P (0)
qg (ξ)

[
ln

Q2 + m2
c

µ2
F

+ ln
(1 − ξ)2

ξ(1 − λξ)

]
+ (1 − ξ)

}
+

[
1

(1 − ζ)⊕
∓ 1

ζ

]
∆P (0)

qg (ξ) + ∆hg
i (ξ, ζ, λ) (A9)

where

∆hg
3(ξ, ζ, λ) = −ξ(1 − λ)

[
1
ζ2 − 2

ζ

]
∆hg

4(ξ, ζ, λ) =
1 − λ

ζ2 ξ(1 − 2λ) +
1
ζ

[
2ξ(1 − λ2) − (1 − λ)

]
∆hg

1(ξ, ζ, λ) = ξ(1 − λ)
[

1
ζ2 − 2

ζ

]
+ 1 − 2λξ

with ∆P
(0)
qg (ξ) = 1

2 [2ξ−1] denoting the LO g → q splitting
function. The ⊕ distribution is already defined in (A4).
When integrated over ζ, the results in (A9) reduce to the
inclusive coefficients in (21), i.e.,

∆Hg
i (ξ, µ2

F , λ) ≡
∫ 1

ζmin

dζ ∆Hg
i (ξ, ζ, µ2

F , λ) , (A10)

where

∆Hg

i= 3,4
1

(ξ, µ2
F , λ)

=
[
∆P (0)

qg (ξ)
(

∓Lλ + ln
Q2 + m2

c

µ2
F

+ ln
(1 − ξ)2

ξ(1 − λξ)

)
+ ∆hg

i (ξ, λ)
]

(A11)

with

Lλ ≡ ln
1 − λξ

(1 − λ)ξ

and

∆hg
3(ξ, λ) = 2(1 − λ) Lλ ξ

∆hg
4(ξ, λ) = 2(1 − λ) (1 − ξ) + (1 − λ) Lλ [2ξ(1 + λ) − 1]

∆hg
1(ξ, λ) = (1 − ξ) [4 − 1/(1 − λξ)] − 2(1 − λ) Lλ ξ .
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